Tuesday, October 18, 2011

Sample Paper 1

Sample Test 1

Question 1 – Find the portfolio volatility given the following information (5 Marks)

Price

Quantity

Volatility (%)

X – Apple

370

100

30%

Y – Microsoft

27

200

28%

Z – Citigroup

25

250

50%

K – GE

15

300

40%

Correlation Matrix –

X

Y

Z

K

X

1

Y

0.5

1

Z

0.4

0.42

1

K

0.5

0.45

0.55

1

Solution

X

Y

Z

K

Total

Price

370

27

25

15

Quantity

100

200

250

300

Position

37000

5400

6250

4500

53150

Stdev / Volatility

30%

28%

50%

40%

Weights

69.61%

10.16%

11.76%

8.47%

100.00%

Using Matrix Method –

69.61%

10.16%

11.76%

8.47%

X

0.090

0.042

0.060

0.060

0.042

0.078

0.059

0.050

0.060

0.059

0.250

0.110

0.060

0.050

0.110

0.160

X

69.61%

10.16%

11.76%

8.47%

=

0.0790555

0.048385

0.086454

0.07337

X

69.61%

10.16%

11.76%

8.47%

=

Variance

0.0763281

Volatility of the Portfolio

27.628%

Question 2 – Find the following statistics from the returns (use log returns) of the time series data given.

AM, GM, Mode, Variance, Std Dev, Skewness, Kurtosis, Volatility (Daily), Covariance Matrix, correlation Matrix (2+3 = 5 Marks)

Answer 2

Open Excel and Go to Data - Data Analysis – Now use Descriptive Statistics option to generate all except covariance and correlation matrix. Here, the daily volatility is the Std Dev.

Select the covariance and correlation option to generate the respective matrices.

How to install Data Analysis – Go to excel options, select Add-ins and install Data analysis tool pack.

Covariance Matrix -

Apple

Microsoft

Citigroup

GE

Apple

0.000337

Microsoft

0.000165

0.000331

Citigroup

0.000379

0.00041

0.002797

General Electric

0.000236

0.000208

0.000743

0.000652

Correlation Matrix -

Apple

Microsoft

Citigroup

GE

Apple

1

Microsoft

0.494069

1

Citigroup

0.390779

0.426386

1

General Electric

0.504043

0.446948

0.550105

1

Apple

Microsoft

Citigroup

GE

Mean

0.002018

0.000457

-0.00152

7.43E-06

Standard Error

0.000696

0.00069

0.002006

0.000969

Median

0.00189

0.000907

0

0.000785

Mode

#N/A

0

0

0

Standard Deviation

0.018363

0.01821

0.052925

0.025555

Sample Variance

0.000337

0.000332

0.002801

0.000653

Kurtosis

1.640945

6.308376

18.25128

6.573781

Skewness

0.025563

-0.31394

-0.95872

0.285687

Range

0.155956

0.224887

0.817993

0.29403

Minimum

-0.0819

-0.12502

-0.49496

-0.11389

Maximum

0.074056

0.099871

0.323036

0.180142

Sum

1.404854

0.317978

-1.06139

0.005175

Count

696

696

696

696

Volatility (daily)

0.018363

0.01821

0.052925

0.025555

No comments:

Post a Comment